Skip to product information
1 of 2

vendor-unknown

BC547 NPN Transistor - RS566

BC547 NPN Transistor - RS566

SKU:RS566

In stock

Regular price Rs. 4.00
Regular price Sale price Rs. 4.00
Sale Sold out
Shipping calculated at checkout.

For refund/return/replacement, call us at +91 95995 94524 For bulk and B2B enquiries kindly mail us at support@rees52.com

  • Fast Shipping
  • Affordable Price
  • Support
View full details
  • Bi-Polar NPN Transistor
  • DC Current Gain (hFE) is 800 maximum
  • Continuous Collector current (IC) is 100mA
  • Emitter Base Voltage (VBE) is 6V
  • Base Current(IB) is 5mA maximum
  • Available in To-92 Package

Pin Configuration

Pin Number

Pin Name

Description

1

Collector

Current flows in through collector

2

Base

Controls the biasing of transistor

3

Emitter

Current Drains out through emitter

BC547 Transistor Features

  • Bi-Polar NPN Transistor
  • DC Current Gain (hFE) is 800 maximum
  • Continuous Collector current (IC) is 100mA
  • Emitter-Base Voltage (VBE) is 6V
  • Base Current(IB) is 5mA maximum
  • Available in To-92 Package

Note: Complete Technical Details can be found at the datasheet give at the end of this page.

BC547 Equivalent Transistors

BC549, BC636, BC639, 2N2222 TO-92, 2N2222 TO-18, 2N2369, 2N3055, 2N3904, 2N3906, 2SC5200

Brief Description on BC547

BC547 is an NPN transistor hence the collector and emitter will be left open (Reverse biased) when the base pin is held at ground and will be closed (Forward biased) when a signal is provided to base pin. BC547 has a gain value of 110 to 800, this value determines the amplification capacity of the transistor. The maximum amount of current that could flow through the Collector pin is 100mA, hence we cannot connect loads that consume more than 100mA using this transistor. To bias a transistor we have to supply current to base pin, this current (IB) should be limited to 5mA.

When this transistor is fully biased then it can allow a maximum of 100mA to flow across the collector and emitter. This stage is called Saturation Region and the typical voltage allowed across the Collector-Emitter (V­CE) or Base-Emitter (VBE) could be 200 and 900 mV respectively. When base current is removed the transistor becomes fully off, this stage is called as the Cut-off Region and the Base-Emitter voltage could be around 660 mV.