Skip to product information
1 of 4

vendor-unknown

ARDUIN0 Micro Atmega32u4 5V 16MHz - AA147

ARDUIN0 Micro Atmega32u4 5V 16MHz - AA147

SKU:AA147

In stock

Regular price Rs. 400.00
Regular price Sale price Rs. 400.00
Sale Sold out
Shipping calculated at checkout.

For refund/return/replacement, call us at +91 95995 94524 For bulk and B2B enquiries kindly mail us at support@rees52.com

  • Fast Shipping
  • Affordable Price
  • Support
View full details
  • ATmega328U4 microcontroller
  • Operating Voltage: 5V
  • Digital I/O pins: 20
  • Clock speed: 16MHz
  • Input Voltage: 7-12V

Description:

The ARDUIN0 micro is an little-bitty development board that comes fully assembled and ready to go out of it's cute little box. It has 20 digital input/output pins (of which 7 can be used as PWM outputs and 12 as analog inputs), a 16 MHz crystal oscillator, a micro USB connection, an ICSP header and a reset button. The micro can emulate a mouse and keyboard, in addition to a virtual (CDC) serial / COM port when connected to your computer, so have some fun with it!

Specification:

  • Microcontroller: ATmega32u4
  • Operating Voltage: 5V
  • Input Voltage (recommended): 7-12V
  • Input Voltage (limits): 6-20V
  • Digital I/O Pins: 20
  • PWM Channels: 7
  • Analog Input Channels: 12
  • DC Current per I/O Pin: 40 mA
  • DC Current for 3.3V Regulator: 50mA
  • DC Current for 5V Regulator: 1A
  • Flash Memory: 32 KB (ATmega32u4) of which 4 KB used by bootloader
  • SRAM: 2.5 KB (ATmega32u4)
  • EEPROM: 1 KB (ATmega32u4)
  • Clock Speed: 16 MHz

Power:

  • The Micro can be powered via the micro USB connection or with an external power supply. The power source is selected automatically.
  • External (non-USB) power can come either from a DC power supply or battery. Leads from a battery or DC power supply can be connected to the Gnd and Vin pins.
  • The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may become unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.
  • The power pins are as follows:

    • VI: The input voltage to the MICRO board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin.
    • 5V: The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
    • 3V: A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
    • GND: Ground pins.

Memory:

The ATmega32U4 has 32 KB (with 4 KB used for the bootloader). It also has 2.5 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Input And Output:

Each of the 20 digital i/o pins on the Micro can be used as an input or output, using pinMode(),digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive 20 mA as recommended operating condition and has an internal pull-up resistor (disconnected by default) of 20-50 k ohm. A maximum of 40mA is the value that must not be exceeded to avoid permanent damage to the microcontroller.

In addition, some pins have specialized functions:

  • Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data using the ATmega32U4 hardware serial capability. Note that on the Micro, the Serial class refers to USB (CDC) communication; for TTL serial on pins 0 and 1, use the Serial1 class.
  • TWI: 2 (SDA) and 3 (SCL). Support TWI communication using the Wire library.
  • External Interrupts: 0(RX), 1(TX), 2, 3 and 7. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
  • PWM: 3, 5, 6, 9, 10, 11 and 13. Provide 8-bit PWM output with the analogWrite() function.
  • SPI: on the ICSP header. These pins support SPI communication using the SPI library. Note that the SPI pins are not connected to any of the digital I/O pins as they are on the Uno, they are only available on the ICSP connector and on the nearby pins labelled MISO, MOSI and SCK.
  • RX_LED/SS This is an additional pin compared to the Leonardo. It is connected to the RX_LED that indicates the activity of transmission during USB communication, but is can also used as slave select pin (SS) in SPI communication.
  • LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.
  • Analog Inputs: A0-A5, A6 - A11 (on digital pins 4, 6, 8, 9, 10, and 12). The Micro has a total of 12 analog inputs, pins from A0 to A5 are labelled directly on the pins and the other ones that you can access in code using the constants from A6 trough A11 are shared respectively on digital pins 4, 6, 8, 9, 10, and 12. All of which can also be used as digital I/O. Each analog input provide 10 bits of resolution (i.e. 1024 different values). By default the analog inputs measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and the analogReference() function.

Pin Diagram:

Package Included:

1 x ARDUIN0 Micro Atmega32u4 5V 16MHz